Prebiotic Potential of Ubi Flour (Dioscorea alata L.)

> Lotis E. Mopera, Rachel Anne M. Gonzaga, Olivia M. Del Rosario and Ara Fatima C. Algar

PREBIOTICS

- X World demand:167, 700 tons
- Worth: 390 Million Euro (Siro et al., 2008) ×
- ✗ 2018 Prebiotic market :

Prebiotics (Gibson et al., 2004) **√non-digestible** selectively fermented ingredient vchanges in the gut microbiota stimulate growth of probiotics vbeneficial to health

Yacon

Dahlia hlia sp.)

Chicory Cichorium intybus)

Jerusalem artichoke (*Helianthus tuberosus*)

DIOSCOREA ALATA L.

- Popular ingredient in Philippine desserts, pastries, ice cream
- Require low maintenance
- High processing value
- Promising nutritional benefits

OBJECTIVES

- Processing of *ubi* into flour considering application as prebiotic
- Determine the effect of ubi flour on the growth of some selected gastrointestinal bacteria *in vitro* to evaluate its prebiotic potential
- ✓ Evaluate the prebiotic components of ubi flour

METHODOLOGY: SAMPLE PREPARATION

METHODOLOGY: EFFECT OF UBI FLOUR ON THE GROWTH OF INTESTINAL BACTERIA

MRS/NA

MRS Broth/NB

Microorganisms:

Lactobacillus casei 1064
Lactobacillus acidophilus 1900
Lactobacillus plantarum 1223
Escherichia coli 1634

Fermentation Medium (M9/M9+Glucose; MRS/MRS+1% Flour) Serial Dilution

1% inoculum

24 h @37°C

Pour Plating pH Cell Density

METHODOLOGY: EVALUATION OF PREBIOTIC POTENTIAL (HUEBNER ET AL., 2007)

Prebiotic activity score = {(probiotic Log CFU ml⁻¹ on prebiotic at 24 hr) – <u>(probiotic Log CFU ml⁻¹ on prebiotic at 0 hr)</u> (probiotic Log CFU ml⁻¹ on glucose at 24 hr) – (probiotic Log CFU ml⁻¹ on glucose at 0 hr)}

- {(enteric Log CFU ml⁻¹ on the prebiotic at 24 hr) – (enteric Log CFU ml⁻¹ on the prebiotic at 0 hr) (enteric Log CFU ml⁻¹ on glucose at 24 hr – (enteric Log CFU ml⁻¹ on glucose at 0 hr)}

METHODOLOGY: EVALUATION OF PREBIOTIC COMPONENTS

- 1. Total sugar (Dubois, 1956)
- 2. Total starch (Chen et al., 2010)
- 3. Resistant starch (Chen et al., 2010)
- 4. **Dietary fiber** (AOAC w/ modifications)
- 5. Neutral detergent fiber (Van Soest and Wine, 1967)
- 6. Crude fiber (AOAC)

Figure 1. Average cell densities of *Lactobacillus* spp. reported as Log CFU ml⁻¹ after 24 h incubation at 37^oC

Figure 2. Average cell densities of *E. coli* reported as Log CFU ml⁻¹ after 24 h incubation at 37^oC in basal minimal medium with or without treatments.

Figure 3. Prebiotic activity score of Lactobacilli in Hinaligi (HIN), Magnolia (MAG) purple yam varieties and Yacon (YAC) flour

Change in pH of fermentation medium after 24 h incubation

TREATMENT	L. casei		L. acidophilus		L. plantarum	
Time	0 h	24 h	0 h	24 h	0 h	24 h
MRS+G	6.1	4.1	6.1	4.0	6.2	4.2
LH	6.0	3.9	6.2	4.3	6.1	4.4
LM	6.1	4.2	6.2	4.3	6.1	4.6
MRS + Y	6.0	4.2	6.0	3.9	6.0	4.1

Legend: MRS+Glucose, MRS medium + glucose; LH, MRS medium+Hinaligi flour; LM, MRS medium+Magnolia flour; MRS+Y, MRS medium and Yacon flour.

TREATMENT	0 h	24 h
M9 + G	7.2	5.3
M9 + H	7.5	7.3
M9 + M	7.5	7.3
M9 + Y	7.2	6.0

Legend: M9+G, M9 minimal medium and glucose; M9+H, M9 minimal medium and *Hinaligi* flour; M9+M, M9 minimal medium and *Magnolia* flour; M9+Y, M9 minimal medium and Yacon flour.

E. coli

Table 1. Chemical properties of Magnolia andHinaligi flour of purple yam.

Property	MAGNOLIA (g/100g)	HINALIGI (g/100g)
Total sugar	2.36 ± 0.56	3.98 ± 1.17
Resistant starch	11.55 ± 4.13	14.40 ± 8.89
Insoluble dietary fiber	9.60 ± 0.91	5.73 ± 0.91
Soluble dietary fiber	1.64 ± 0.00	1.63 ± 0.16
Neutral detergent fiber	55.81 <u>+</u> 3.41	42.64 <u>+</u> 1.09
Crude fiber	0.94 ± 0.08	1.93 ± 0.09

CONCLUSIONS

Prebiotic flour added to the culture medium *in vitro* increased the cell density of the selected probiotic bacteria and decrease the growth of *E.coli*

Resistant starches and dietary fiber might play a role in the prebiotic potential.

RECOMMENDATION

Different concentrations of ubi flour should be tested for its prebiotic potential

Other Philippine root crops should be evaluated for their potential as prebiotic

Can be used as a supplement for infant formula, yogurts and other food vehicle requiring the use of prebiotics.

THANK YOU VERY MUCH!