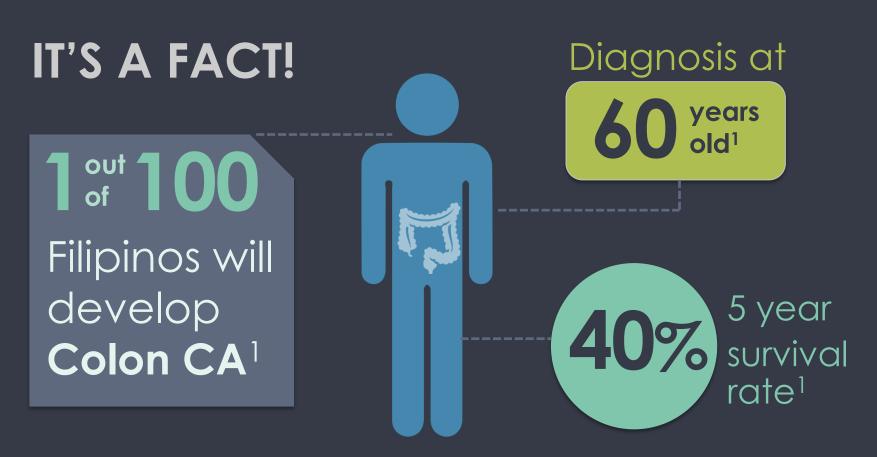
CANCER IN THE PHILIPPINES

1988 Philippine Cancer Control Program started ¹

"Cancer can largely be prevented by a public health effort"¹

1. Buban CE. Colorectal cancer curable if detected early. Philippine Daily Inquirer [Internet]. 2013 Sept 20. Available from: http://business.inquirer.net/143697/colorectal-cancer-curable-if-detected-early

COLORECTAL CANCER


leading cause of morbidity and mortality in the PHILIPPINES¹

most common cancer in the WORLD²

1. Buban CE. Colorectal cancer curable if detected early. Philippine Daily Inquirer [Internet]. 2013 Sept 20. Available from: http://business.inquirer.net/143697/colorectal-cancer-curable-if-detected-early

 Cappell M. The pathophysiology clinical presentation, and diagnosis of colon cancer and adenomatous polyps. Elsevier Saunders [Internet]. The Medical Clinics of North America, Volume 89, p. 1; 2005. Available from: https://www.med.upenn.edu/gastro/documents/ MedClinNAcolonicpolyps.pd

 Buban CE. Colorectal cancer curable if detected early. Philippine Daily Inquirer [Internet]. 2013 Sept 20. Available from: http://business.inquirer.net/143697/colorectal-cancer-curable-if-detected-early

APITHERAPY THEN...

Image from Pinterest: Sumerian stele of winged bee goddess

Image from A. Dürer, 1514: Eros, Venus and the bees

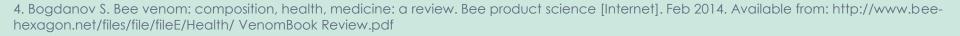
Image from China Daily: Apitherapy treatment in a hospital in Zhengzhou, Henan Province

Image from apitherapy.org: Dry venom preparation

...AND NOW.

Apis mellifera preferably grown in bee farms in the Philippines³

Image from Flickr.com


3. Hadley, D. Honey Bee- habits and traits of the honey bee, Apis mellifera [Internet]. [Place unknown]: About.com; 2014. Available from: http://insects.about.com/od/antsbeeswasps/p/A_ mellifera.htm

Principal component of bee venom

- anti-cancer
- anti-bacterial
- anti-fungal
- anti-viral properties⁴

At 2.8 mg/kg body weight LD50, it is safe for human treatment⁴ Minimal side effects⁴

IN VITRO ANTI-PROLIFERATIVE EFFECTS OF BEE (Apis mellifera) VENOM IN HCT 116 COLON CANCER CELL LINES

Bangero J, Calise DK, de la Peña LJ, Delos Reyes F, Documento E, Durana V, Faculin AK, Ong PKM, Pueblo RL, Roldan NA

West Visayas State University | College of Medicine

SIGNIFICANCE OF THE STUDY

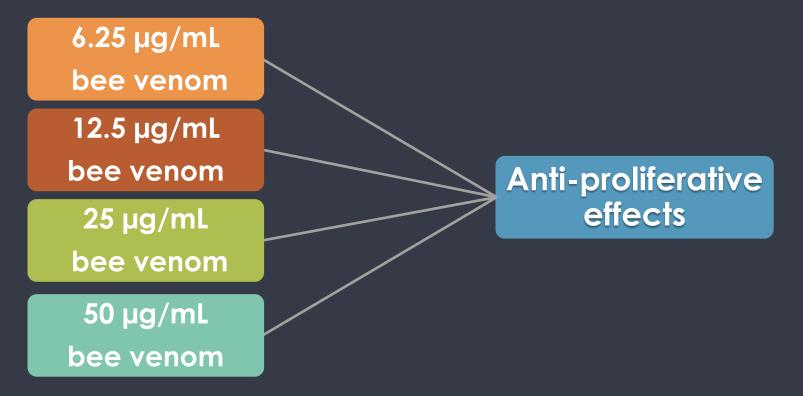
O Colon cancer patients **O** Healthcare providers **O** Pharmaceutical companies **O** Beekeepers **O** Future researchers

GENERAL OBJECTIVE

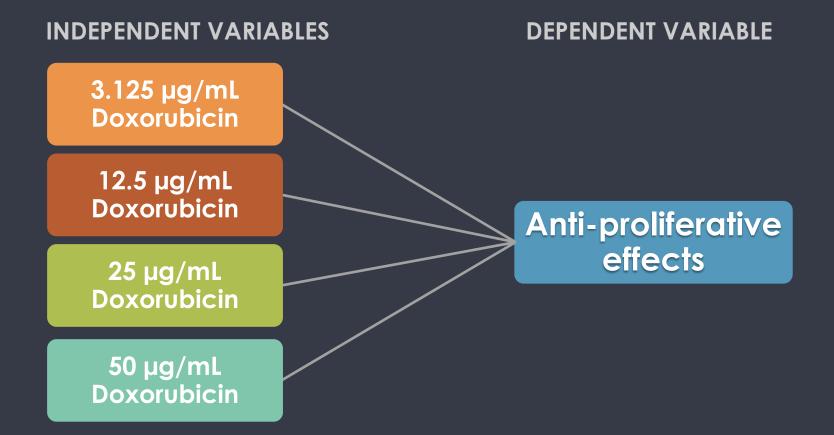
To determine the in vitro antiproliferative effects of bee venom in HCT116 colon cancer cell lines using Doxorubicin as positive control and Dimethylsulfoxide (DMSO) as negative control

SPECIFIC OBJECTIVES

To determine the effects of the different concentrations of bee venom on:


- a. Cell number
- b. Cell morphology
- c. Cell viability
- d. Percent cell lysis

SPECIFIC OBJECTIVES


To identify the most effective concentration of bee venom in which 50% growth of colon cancer cells is inhibited

DEPENDENT VARIABLE

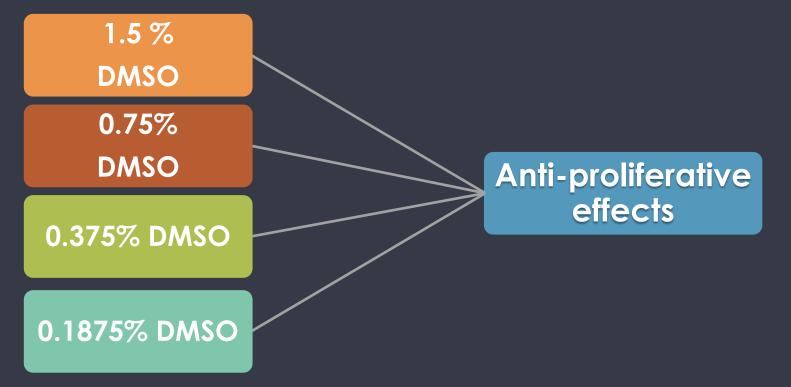
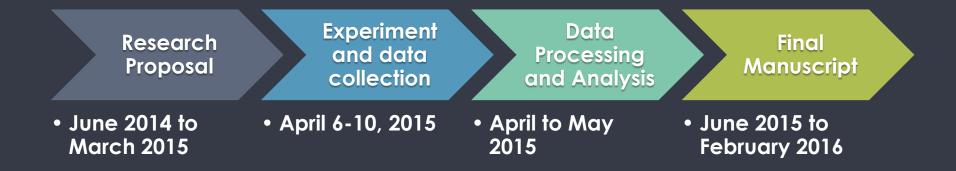

Figure 1. Relationship between various concentrations of bee venom and dependent variables.

Figure 2. Relationship between various concentrations of doxorubicin and dependent variables.

INDEPENDENT VARIABLES

DEPENDENT VARIABLE

Figure 3. Relationship between various concentrations of DMSO and dependent variables.


STUDY DESIGN **Completely Randomized** Design (CRD) in two replications with three trials per treatment

STUDY SETTING

University of the Philippines Diliman, QC Private Laboratory, Novaliches, QC WVSU College of Medicine Clinical Laboratory, Iloilo City

STUDY PERIOD

MANEUVERS

PRELIMINARY ACTIVITIES

Procurement of dried lyophilized bee venom powder from Apitoxin Corporation

Storage of bee venom at -20°C in SEAFDEC Aquaculture Department

MEDIA PREPARATION University of the Philippines -Diliman

PLATING OF CELLS AND INCUBATION

6x10⁴ cells/mL in sterile 96-well microtiter plates

RPMI 1640 medium at 37°C with 5% CO₂

BEE VENOM TREATMENT Positive Control: Doxorubicin Negative Control: DMSO Incubated for 72 h at 37°C with 5% CO₂



METHYL THIAZOL TETRAZOLIUM (MTT) ASSAY

- UP Diliman Biology Department Protocol
- 20 µL MTT at 5 mg/mL PBS

5

- Incubated for 2 to 4 h at 37° C with 5% CO₂
- Absorbance measured at 570 nm with a microtiter plate reader

MANUAL CELL COUNTING

Neubauer counting chamber
1:20 dilution
Estimates of the number per well was made

CYTOPATHOLOGY

Hematoxylin & Eosin (H&E) staining
Final labelling of the finished

 Final labelling of the finishea slides

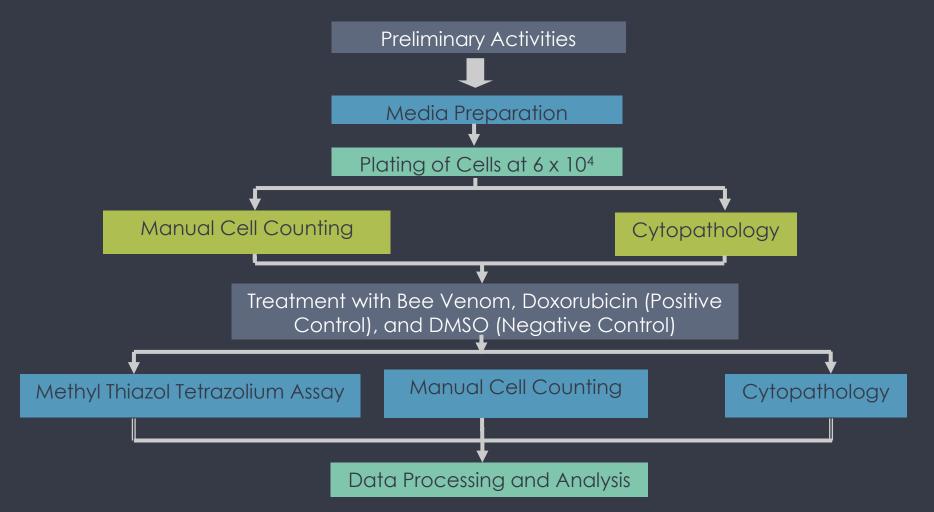


Figure 4. Flow chart that illustrates the manner in which the research methods ensued.

DATA PROCESSING AND ANALYSIS

SPSS v. 20.0
"icpin software"
p value < 0.05

Mean

- Median Rank
- Paired t-test
- Analysis of Variance (ANOVA)
- Duncan's Multiple Range Test (DMRT)
- Orthogonal Contrast
 Kruskall-Wallis Test

ETHICAL CONSIDERATIONS

approved

HCT 116 colon cancer cell lines grown in vitro Laboratory personnel supervised procedures No human participation Proposal submitted to **UBERRC** for review and was

RESULTS AND DISCUSSION

Anti-proliferative effects conferred by the purified bee venom

Table 1. Cell number before and after treatment

Treatment	Concentration	Mean Nu (per	p - value	
		Before Treatment	After Treatment	t i i i i i i i i i i i i i i i i i i i
Bee Venom	6.25	7600	318.50	<0.001*
(µg/mL)	12.5	7600	177.83	<0.001*
	25	7600	144.67	<0.001*
	50	7600	140.67	<0.001*
Doxorubicin	3.125	7600	548.17	<0.001*
(µg/mL)	6.25	7600	344.50	<0.001*
	12.5	7600	314.83	<0.001*
	25	7600	240.67	<0.001*
DMSO	0.1875	7600	4726.00	<0.001*
(%)	0.375	7600	5192.67	0.001*
	0.75	7600	4674.17	<0.001*
	1.5	7600	5292.50	0.002*

*Significant at p<0.05; Number of cells before treatment was based on estimate

Table 2. ANOVA for the Comparison of Cell Number after Treatment

	Sum of Squares	df	Mean Square	F	p-value
Between Groups	354903161.486	11	32263923.771	175.450	<0.001*
Within Groups	11033515.167	60	183891.919		
Total	365936676.653	71			

Table 3. DMRT Post-Hoc Analysis for Number of Cells per µL after Treatment

Treatment	Concentration	Subsets		
		1	2	3
Bee venom	50	140.670]	
Bee venom	25	144.670		
Bee venom	12.5	177.830		
Doxorubicin	25	240.670		
Doxorubicin	12.5	314.830		
Bee venom	6.25	318.500		
Doxorubicin	6.25	344.500		
Doxorubicin	0.3125	548.170		
DMSO	0.1875		4674.170	
DMSO	0.375		4726.000	
DMSO	0.75		5192.670	5192.670
DMSO	1.5			5292.500
p-value	0.1875	0.167	0.051	0.688

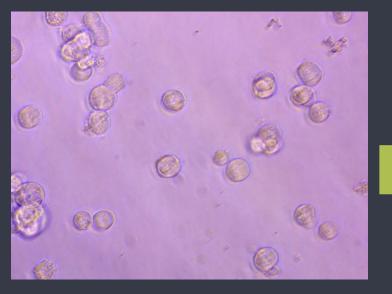
Contrast	Value of Contrast	Std. Error	T	df	p-value
DOX-DMSO	-18437.17	605.257	-30.462	17.757	<0.001*
DOX-BV	666.50	58.562	11.381	28.115	<0.001*
DMSO-BV	19103.67	604.816	31.586	17.706	<0.001*

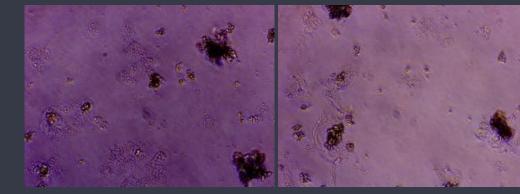
Table 4. Orthogonal Contrast for Number of Cells per µL after Treatment

Table 5. ANOVA for the Comparison of Cell Number after Treatmentbetween Bee Venom and Doxorubicin

	Sum of Squares	df	Mean Square	F	p-value
Between Groups	770821.979	7	110117.426	42.812	<0.001*
Within Groups	102885.500	40	2572.138		
Total	873707.479	47			

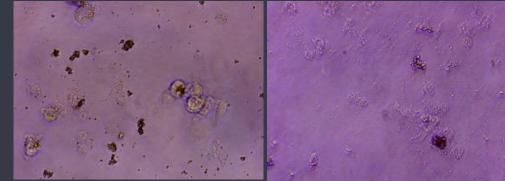
OPEN ACCESS **toxins** ISSN 2072-6651 www.mdpi.com/journal/toxins

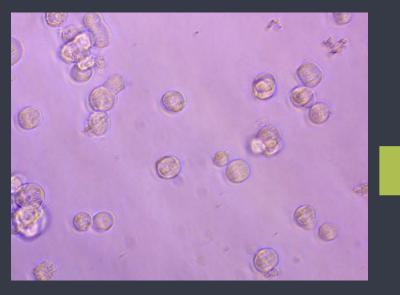

Article

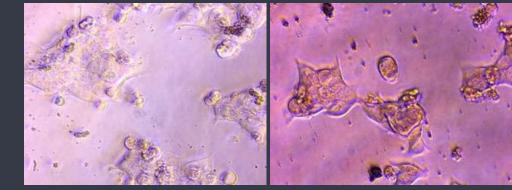

Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

Kyung Eun Choi¹, Chul Ju Hwang¹, Sun Mi Gu¹, Mi Hee Park¹, Joo Hwan Kim¹, Joo Ho Park¹, Young Jin Ahn¹, Ji Young Kim¹, Min Jong Song², Ho Sueb Song³, Sang-Bae Han¹ and Jin Tae Hong^{1,*}

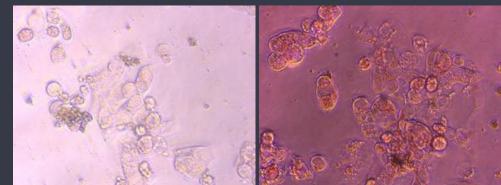
Asian honey bee (Apis cerana) venom showed significant decrease in the number of A549 and NCI-H460 lung cancer cells in a concentrationdependent manner


No effect in normal LL24 lung cancer cells


6.25 µg/mL bee venom

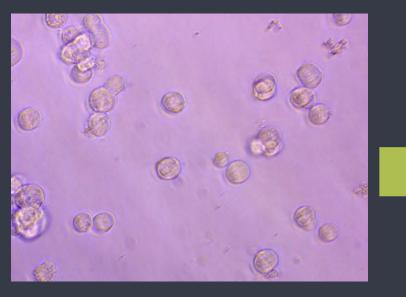

12.5 µg/mL bee venom

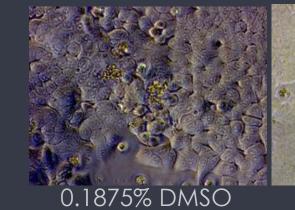
25 μg/mL 50 μg/mL bee venom bee venom AFTER TREATMENT


BEFORE TREATMENT

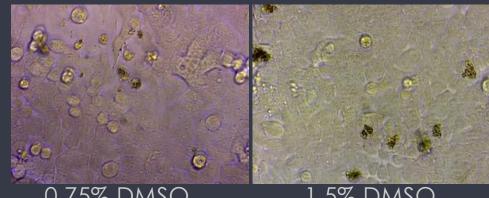
3.125 µg/mL Doxorubicin

6.25 µg/mL Doxorubicin




12.5 µg/mL Doxorubicin

25 µg/mL Doxorubicin


BEFORE TREATMENT

AFTER TREATMENT

0.375% DMSO

0.75% DMSO

1.5% DMSO

BEFORE TREATMENT

AFTER TREATMENT

Table 6. Cell Morphology after Treatmentwith Bee Venom, Doxorubicin and DMSO

Treatment	Concentration	
Bee Venom	6.25	Non-intact
(µg/mL)	12.5	Non-intact
	25	Non-intact
	50	Non-intact
Doxorubicin	3.125	Non-intact
(µg/mL)	6.25	Non-intact
	12.5	Non-intact
	25	Non-intact
DMSO	0.1875	Intact
(%)	0.375	Intact
	0.75	Intact
	1.5	Non-intact

Bee venom brought about cellular degeneration described morphologically as decreased cell count and non-intact morphology.

Toxicology and Applied Pharmacology Volume 258, Issue 1, 1 January 2012, Pages 72–81

Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway

Miran Jo^a, Mi Hee Park^a, Pushpa Saranya Kollipara^a, Byeong Jun An^b, Ho Sueb Song^b, Sang Bae Han^a, Jang Heub Kim^c, Min Jong Song^{c,} ▲· ⊠, Jin Tae Hong^{a,} ▲· ⊠

open access

ISSN 2072-6651 www.mdpi.com/journal/toxins

Article

Cancer Cell Growth Inhibitory Effect of Bee Venom via Increase of Death Receptor 3 Expression and Inactivation of NF-kappa B in NSCLC Cells

Kyung Eun Choi¹, Chul Ju Hwang¹, Sun Mi Gu¹, Mi Hee Park¹, Joo Hwan Kim¹, Joo Ho Park¹, Young Jin Ahn¹, Ji Young Kim¹, Min Jong Song², Ho Sueb Song³, Sang-Bae Han¹ and Jin Tae Hong^{1,*}

Journal of Chemical and Pharmaceutical Research, 2015, 7(2):1-5

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Investigating the effect of bee venom on human colon cancer cells (HT-29) and hepatic cells (HepG2) in comparison to L929 cells

Khozeimeh F.^a, Golestannejad Z.^a, Doostmohammadi M.^{b*} and Gavanj S.^b

The Prostate

Original Article

Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF- κB^{\uparrow}

Issue

Mi Hee Park¹, Myoung Suk Choi¹, Dong Hoon Kwak¹, Ki-Wan Oh¹, Do Young Yoon ², Sang Bae Han¹, Ho Sueb Song³, Min Jong Song^{4,*} and Jin Tae Hong^{1,*} Article first published online: 17 NOV 2010 DOI: 10.1002/pros.21296 Copyright © 2010 Wiley-Liss, Inc.

Volume 71, Issue 8, pages

The Prostate

801–812, 1 June 2011

Table 7. Descriptive Summary of MTT Assay Absorbance Readings

Treatment	Concentration (µg/mL)	Mean Absorbance Readings	Std. Deviation
DMSO		1.135	0.330
Doxorubicin	3.125	0.220	0.078
	6.25	0.213	0.075
	12.5	0.214	0.073
	25	0.179	0.054
Bee venom	6.25	0.233	0.117
	12.5	0.122	0.091
	25	0.096	0.011
	50	0.094	0.014

Table 8. ANOVA for the	Comparison of MTT Assay	Absorbance Readings
------------------------	-------------------------	---------------------

	Sum of Squares	df	Mean Square	F	p-value
Between Groups	7.564	8	0.946	49.266	<0.001*
Within Groups	1.152	60	0.019		
Total	8.716	68			

Table 9. DMRT Post-Hoc Analysis for MTT Assay Absorbance Readings

Treatment	Concentration Subset		set
	(µg/mL)	1	2
Bee venom	50	0.09444	
Bee venom	25	0.09633	
Bee venom	12.5	0.12167	
Doxorubicin	25	0.17933	
Doxorubicin	6.25	0.21333	
Doxorubicin	12.5	0.21367	
Doxorubicin	0.3125	0.21950	
Bee venom	6.25	0.23267	
DMSO			1.13489
p-value		0.107	1.000

Table 10. Orthogonal Contrast between Treatments

Contrast	Value of Contrast	Std. Error	t	df	p-value
DOX-BEE	0.28072	0.076196	3.684	34.195	0.001*

*Significant at p<0.05

Table 11. ANOVA for the Comparison of MTT Assay AbsorbanceReadings between BeeVenom and Doxorubicin

	Sum of Squares	df	Mean Square	F	p-value
Between Groups	0.193	7	0.028	5.146	<0.001*
Within Groups	0.278	52	0.005		
Total	0.471	59			

Table 12. Post-Hoc Analysis for MTT Assay Absorbance Readings using DMRT

	Concentration		Subset	
Treatment	Treatment (µg/mL) -	1	2	3
Bee venom	50	0.09444		
Bee venom	25	0.09633		
Bee venom	12.5	0.12167	0.12167	
Doxorubicin	25		0.17933	0.17933
Doxorubicin	6.25			0.21333
Doxorubicin	12.5			0.21367
Doxorubicin	3.125			0.21950
Bee venom	6.25			0.23267
p-value		0.511	0.141	0.22600

Amount of cytotoxicity against HT-29 human colon cancer cells and L929 fibroblast cells enhanced as concentration of bee venom increases

Table 13. Testing Differences in the Average Percent Lysis

Treatment	Mean Percent Lysis	Test Statistic	p-value
Group	(%)		
Bee Venom	97.43	8.769	0.012*
Doxo	95.24		
DMSO	34.59		

Table 14. Post Hoc Analysis

Treatment 1	Treatment 2	Test Statistic	p-value
Bee Venom	Doxo	3.0	0.239
Bee Venom	DMSO	7.5	0.003*
Doxo	DMSO	4.5	0.078

Table 15. Mean IC₅₀ Results

Treatment Group	Mean IC ₅₀ (ug/mL)
Bee Venom	3.920
Doxo	1.937

Significant *in vitro* anti-proliferative effects

Decrease in cell number in a dosedependent manner

6.25 μg/mL bee venom,12.5 μg/mL and 25 μg/mL Doxorubicin have the same effect Decrease in absorbance as concentration increases indicating a decrease in cell viability

Comparable effects in cell viability exhibited by bee venom at 6.25 µg/mL and all concentrations of doxorubicin Bee venom had the most non-intact cells, increasing in number as the concentration increased

Mean percent cell lysis showed bee venom as the most effective treatment

IC₅₀ of 3.920 μg/mL

RECOMMENDATIONS

Further studies about the effects of bee venom against cancer cells and normal colon cells

Other forms of microscopy such as electron and fluorescent microscopes

Biochemical markers of apoptosis such as peptide annexin; DAPI and TUNEL staining assays and Western blot as alternative assays

Fluorescence in situ hybridization (FISH) and other fluorescent techniques

Flow cytometry for better accuracy in cell counting

Adjunctive effects of bee venom with other medical procedures, drugs or additives

Animal studies as potential anti-cancer agent

Grupo Nuebe, Medicine II-B

IN VITRO ANTI-PROLIFERATIVE EFFECTS OF BEE (Apis mellifera) VENOM IN HCT 116 COLON CANCER CELL LINES

Bangero J, Calise DK, de la Peña LJ, Delos Reyes F, Documento E, Durana V, Faculin AK, Ong PKM, Pueblo RL, Roldan NA

West Visayas State University | College of Medicine