

Project Description

- The previous findings on this T. celebica commence more assays on the biological properties of this fungal species with the hope to find a suitable application as food supplement, on food fortification and/ or drug development.
- In this particular project, the isolation of the cytotoxic components and the determination of its angiogenic and antitumor properties were considered prelude to finding a novel drug.

Objectives

- Isolate the pure compounds from *T. celebica*, exhibiting cytotoxic property,
- Determine the anti-angiogenic property of the isolates,
- Determine the antitumor potential,
- Determine the bioactive metabolites which are characterized as cytotoxic, angiogenic and anti-tumor.

FLOWERIZOF THE PROCEDURES

O1 Collection and Mycelial Propagation of the Mushroom Sample

Mass production of secondary metabolites 02

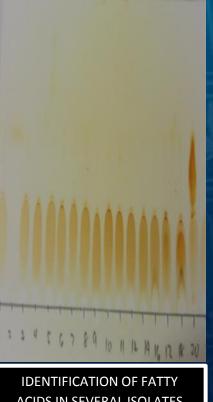
Solvent Fractionation

Cytotoxicity Assay

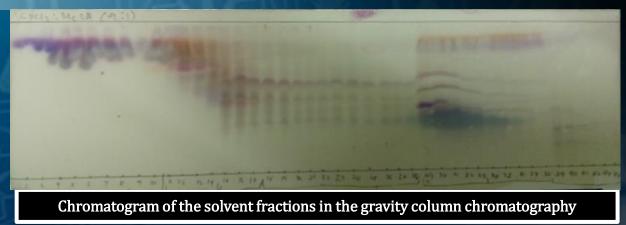
Gravity Column Chromatography

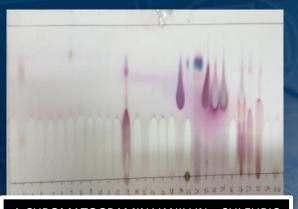
Chicken Chorioallantoic
Membrane Assay

06

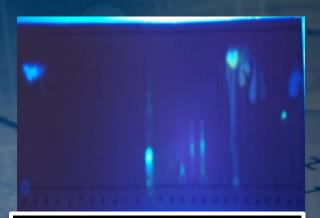

7 Potato Disc Antitumor Assay

Snapshots of the procedures





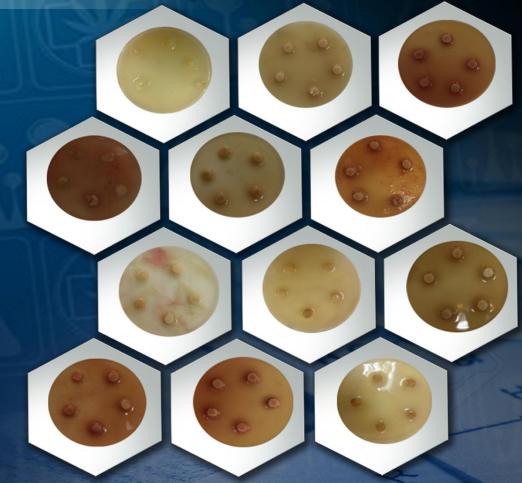
Tissue culture of *T. celebica*



ACIDS IN SEVERAL ISOLATES USING IODINE VAPORS.

A CHROMATOGRAMIN VANILLIN - SULFURIC ACID AS VISUALISING AGENT SHOWING TRITERPENES IN PINK SPOTS, PHENOLS IN **BROWN COLORATION, VIOLET FOR ESSENTIAL OILS**

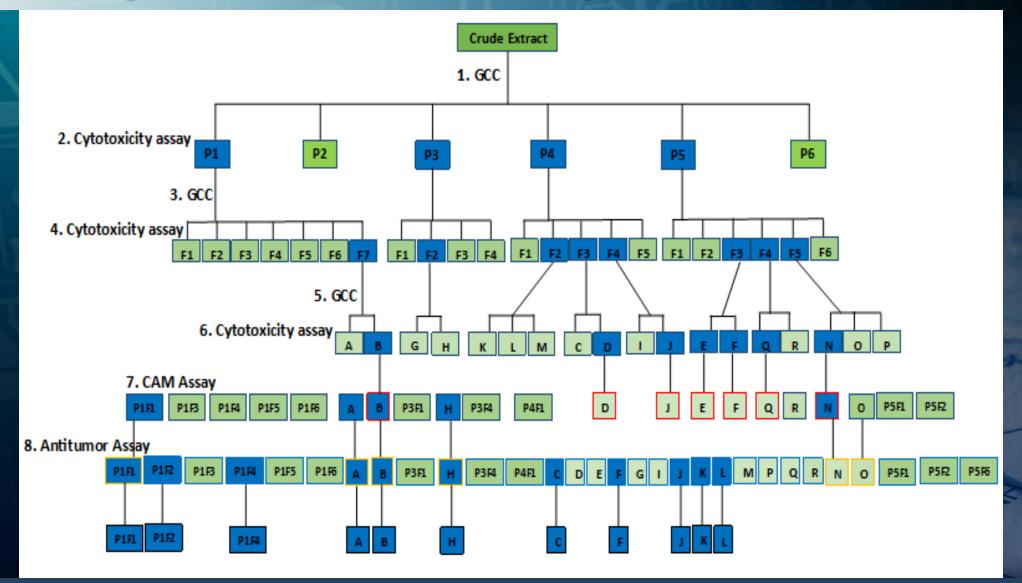
FLOURESCENT METABOLITES IN METHANOLIC-POTASSIUM HYDROXIDE. BLUE FLOURESCENCE INDICATING COUMARINS AND ORANGE WITH ATHRAQUINONES


Chicken Chorioallantoic Membrane Assay

 $\% \ Vascularity = \frac{No.of\ branched\ points\ (treated) - No.of\ branched\ points\ (control)}{No.of\ branched\ points\ (control)} \times 100$

Potato Disc Antitumor Assay

% inhibition = $100 - \frac{Ave\ No.\ of\ tumors\ in\ sample}{Ave\ No.\ of\ tumors\ in\ control} \times 100$


Isolation of the Cytotoxic, Angiogenic and Antitumor Compounds from Trichaleurina celebica

REMOTUSING

No.	Isolates	BIOACTIVITY	BIOACTIVE METABOLITE
1	А	Anti-angiogenic, antitumor	Fatty acid
2	В	Cytotoxic, anti-angiogenic, antitumor	Coumarin
3	С	Andtitumor	Fatty acid
4	D	Cytotoxic, pro-angiogenic	Fatty acid
5	Е	Cytotoxic, pro-angiogenic	Fatty acid
6	F	Cytotoxic, antitumor	Fatty acid
7	G	None	Fatty acid
8	Н	Anti-angiogenic, antitumor	Fatty acid
9	1	None	Fatty acid
10	J	Cytotoxic, pro-angiogenic, antitumor	Fatty acid
11	K	Antitumor	Fatty acid
12	L	Antitumor	Fatty acid
13	M	None	Coumarin
14	N	Cytotoxic, anti-angiogenic pro- angiogenic	Fatty acid
15	0	Pro-angiogenic	Fatty acid

h	No.	Isolates	BIOACTIVITY	BIOACTIVE METABOLITE
	16	Р	None	Fatty acid
	17	Q	Pro-angiogenic	Fatty acid
Ę	18	R	Pro-angiogenic	Phenols
	19	P_1F_1	Anti-angiogenic, antitumor	Essential Oil
ĺ	20	P_1F_2	Antitumor	Fatty acid
	21	P_1F_3	Pro-angiogenic	Anthrone
	22	P ₁ F ₄	Pro-angiogenic	Anthraquinone
١	23	P_1F_5	Pro-angiogenic	Anthraquinone
	24	P_1F_6	Pro-angiogenic	Essential Oil
	25	P ₃ F ₁	Pro-angiogenic	Fatty acid
	26	P ₃ F ₁	Pro-angiogenic	Anthrone
	27	P_4F_1	Pro-angiogenic	Triterpenes
	28	P ₅ F ₁	Pro-angiogenic	Coumarin
	29	P_5F_2	Pro-angiogenic	Fatty acid
	30	P_5F_6	none	Not identified

Summary of the isolation process

Conclusion and Recomendation

Several bioactive compounds isolated and were identified from *T.* celebica have potential as lead in the exploration of pharmaceutical products as anti-tumor, anti – angiogenic and pro – angiogenic agents.

It is therefore recommended that the isolates from *T. celebica* will be screened for its anti – cancer potential using human cancer cell lines and in the treatment of cardiovascular diseases due to its high proangiogenic potential in CAM assay.