

Preparation and characterization of chitosan/bamboo

charcoal/poly(methacrylate) composite beads and its Adsorption to Creatinine

Dorothy Caminos-Peruelo, Ph.D. Chemistry Department-Xavier Ateneo

Co-Authors:

Ronaldo M. Fabicon, Ph.D., Regina C. So, Ph.D.

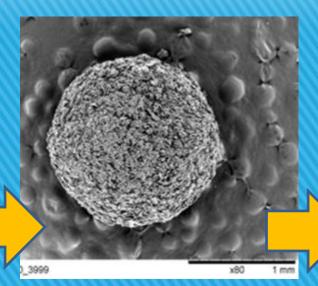
Chemistry Department, Ateneo de Manila University

Ming-Fa Hsieh, Ph.D.

Biomedical Engineering, Chung Yuan Christian University, Taiwan

13th Philippine National Health Related System

August 13,2019


Luxe Hotel, Limketkai, Cagayan de Oro City

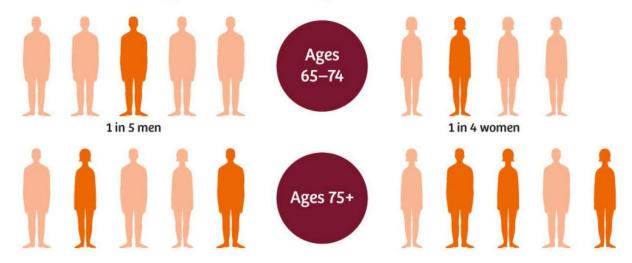
Outline

Introduction

& Motivation

Preparation

Surface Properties



Recommendations

10% Global Population has CKD

Global Prevalence of Chronic Kidney Disease Among Adults Aged 65+

Prevalence of Chronic Kidney disease in the Phil

mortality rate has increased from 11 K (2013) to 14 K (2014)

CKD in 2014

2.6% (1.2M)

9.4% (6M)

DIABETE

41%

Now, Cause of CKD

Cause of CKD in the Past: Chronic glumerolunephritis

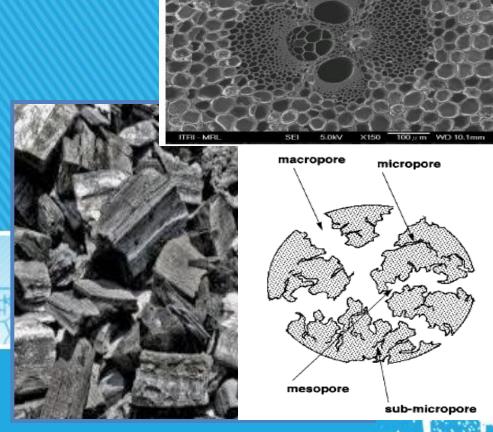
- NNHeS 2003-2004 Renal Report
- http://www.nkti.gov.ph/kidney_health.do.Kidney Health Plus
- National Statistics Office
- · abs-cbnnews.com

The Philippine College of Physicians Philippine Society of Nephrology

Bamboo Plants

Asada T, et al. *Journal of Health Science*, 48(6): 473--479. Mizuta K, et al. *Bioresource Technology*, 95(3): 255--257.

Bamboo charcoal (BC)


Applications: Adsorbent

- ✓ Organic, inorganic, toxic contaminants from aqueous solutions,
- ✓ Nanotechnology,
- ✓ Biomedicine, etc.

Properties

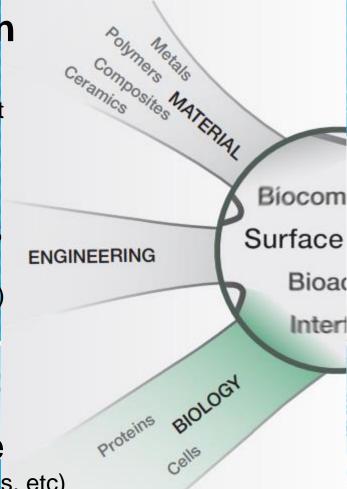
CHEMSTRHigh surface area

- ✓ High adsorption potential
- ✓ Acid-base functional groups
- Unique multicellularity

Understanding the Surface Properties of Biomaterials

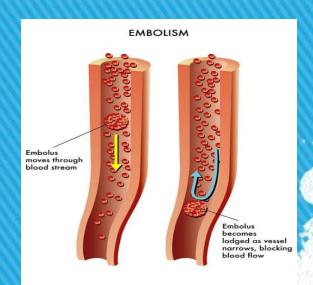
Performance evaluation Chemical properties

(Surface chemistry is distinct from that of the bulk material)


Fabrication protocol, design process

(Tailoring and controlling surface properties is therefore a major challenge in biomaterial engineering)

HEMISTRY


Biological response

(Materials interact with proteins, cells, etc)

Studies in the past...Bamboo charcoal powder

- ✓ BC surface: non-polar
- ✓ Solution was highly basic (pH12)

✓ BC Powder when used as adsorbent for hemoperfusion – risk for embolism

CHEMIS

Studies in past ... Bamboo charcoal / AC Beads....

- Biodegradable & biocompatible
- Nontoxic polymer
- Used as coating to BC (CTS/BC) beads
- Minimizes emboli
- Adsorbed Phenylalanine > albumin

- Coating to pharmaceuticals and AC
- Smooth coating
- Mechanical strength
- Accessible to polar substances

9/2/2019 Jager M, and Wilke A 2003 J. Biomater. Sci., Polym. Ed. **14**, 393 1283

• Hsieh, M.F.et.al. Journal of Biomedical Materials Research. Part A. 2010, 94(4), 1133-1140.

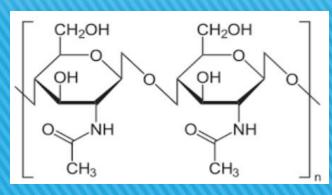
OBJECTIVES

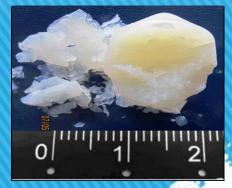
Prepare beads

Surface characteristics

Application:

Dynamic Adsorption of Creatinine




Composition of Beads....

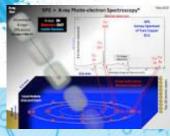
BC

Chitosan

Poly(methacrylate)

Surface Properties of beads revealed by

SEM

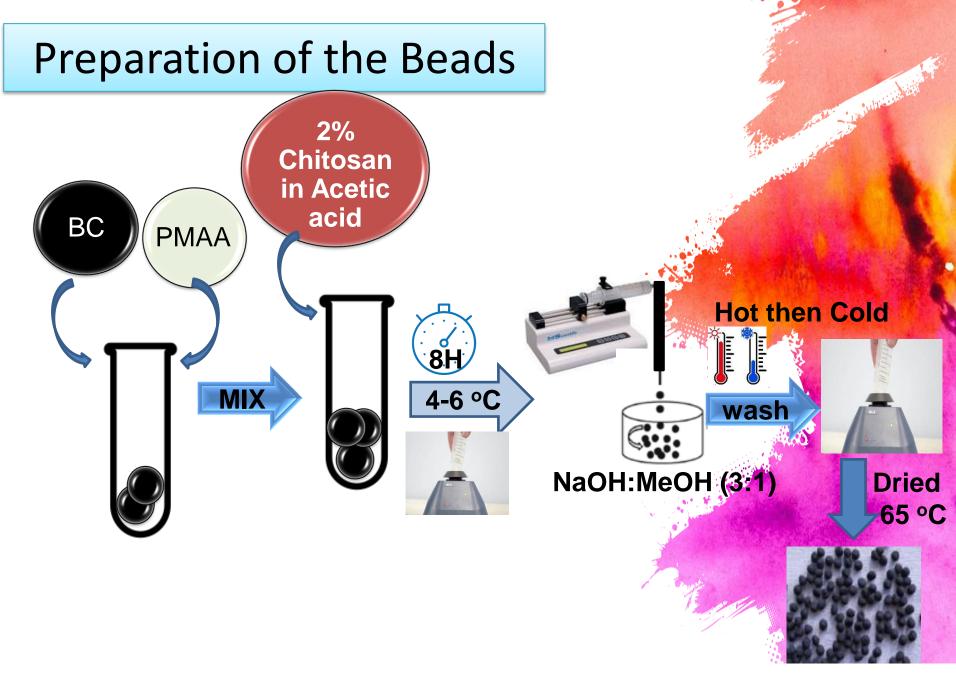

BET

DSC & TGA

peristaltic pump

XPS

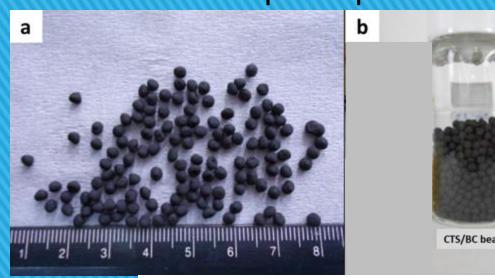
Boehm Titration


pHpzc

Bead column **CR** eluent

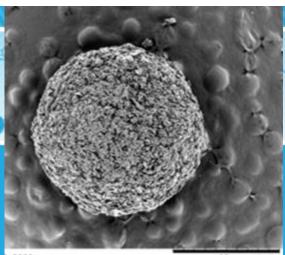
Creatinine Capture

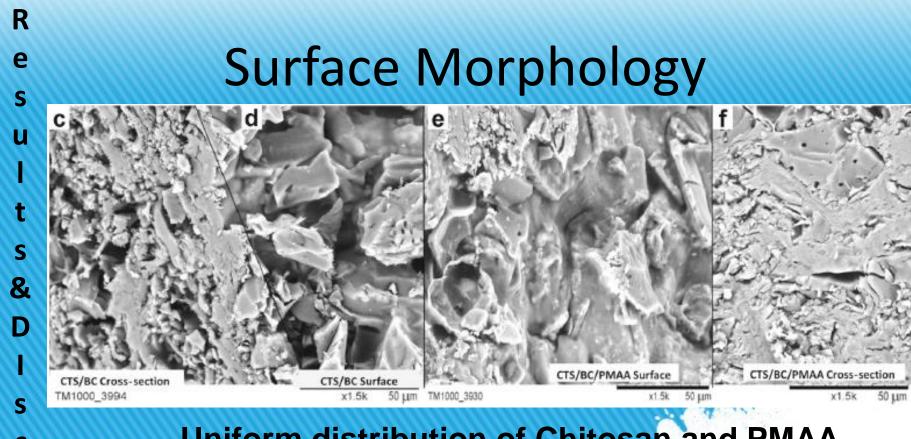
(Dynamic Process)


CR reservoir

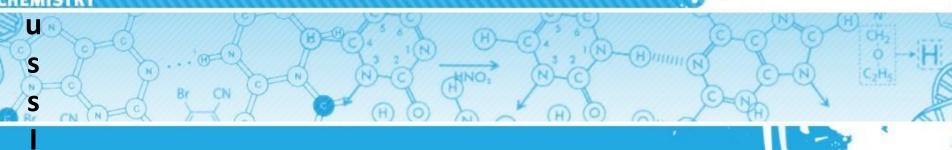
1.49 mm diameter

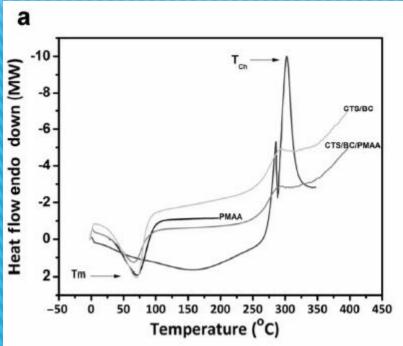
The Prepared Beads...

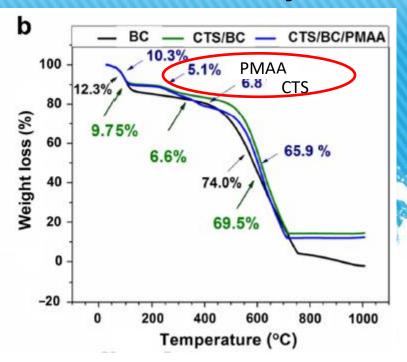

Optical photos



SEM Image@ x80





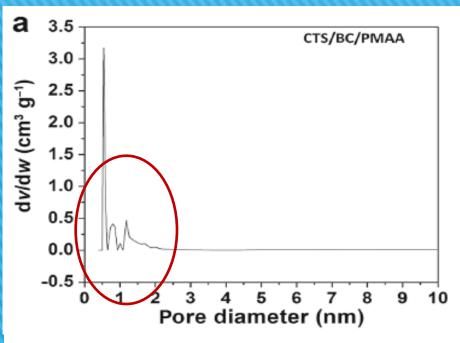

Uniform distribution of Chitosan and PMAA

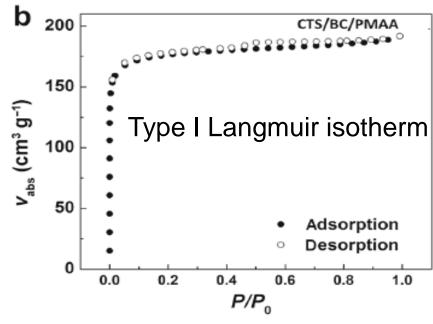
R e S & u S

Homegeneity and Thermal Stability...

- ✓ Sharp endothermic melting temperature, Tm peak at 74.6°C (T_mPMAA)
- ✓ Uniform molecular weight, MW within the sample
- \checkmark CTS/BC/PMAA ($T_m66.77$)

- \checkmark T_{deg} CTS/BC/PMAA > CTS/BC
- √higher degree of thermal stability
- ✓ CTS/BC beads, CTS started to decomposed at temperature 100 - 382°C and burnt at 724° C
- ✓ CTS/BC/PMAA, CTS decomposed

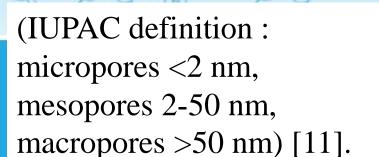

 @ 306-465 °C and burnt at 746° C.


R e

CHEM

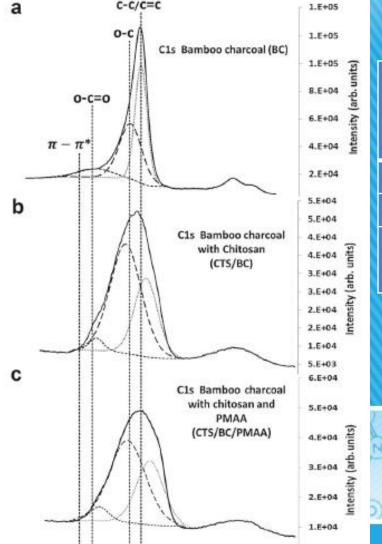
u

Surface Area & Pore size Size Distribution



higher occurrence: micropores; average pore width: less than 2 nm.

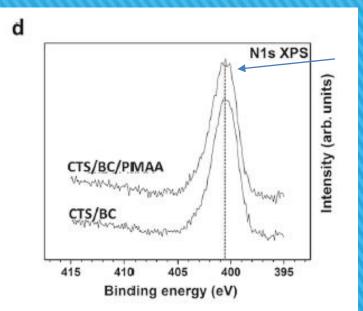
SSA: BET (681.15 m²/g) Langmuir (773.34 m²/g)

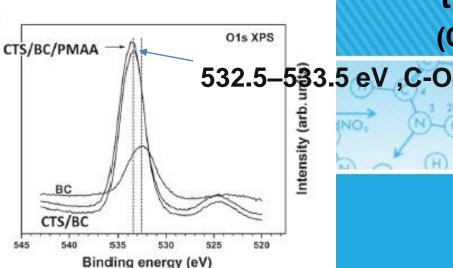


Results&D

Surface Functional Groups: X-Ray Photoelectron Spectroscopy (XPS)

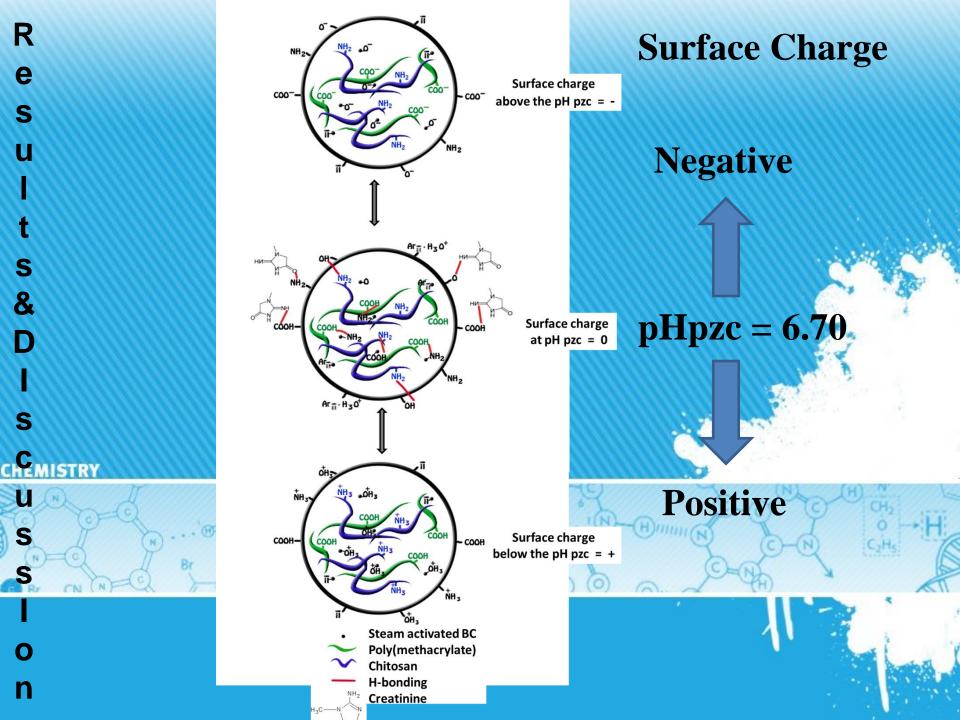
294 292 290 288 286 284 282 280 278 276 274 272 270


0.E+00


	Functional groups Electronic binding			
Adsorbent	energy (eV)			
	pi-pi*	<u>c</u> 00	<u>C</u> -O	<u>C</u> -C/ <u>C</u> =C
ВС	290.0	289.0	285.5	284.5
CTS/BC	-	288.5	285.6	284.0
CTS/BC/	-	288.0	285.8	283.6
PMAA			or (C=N)	

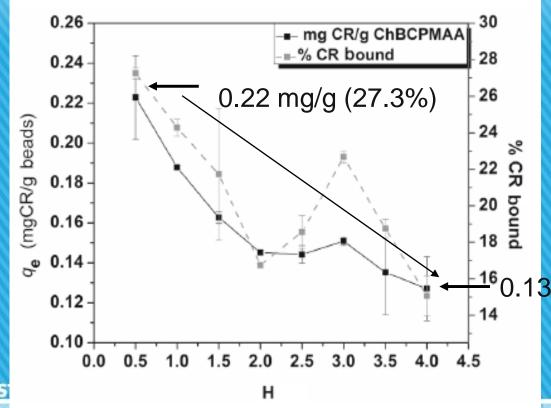
- ✓ surface binding state of C1s shows graphitic carbons, COOH or COOC between 285 and 289 eV.
- ✓ Acidic Properties

R S u S & u S

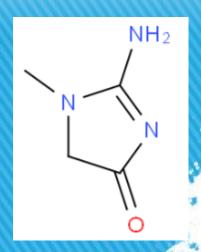

Surface Functional Groups: XPS analysis

398-403 eV, $sp^2 \text{ or } sp^3 \text{ N}$

□ 532.5 eV found in BC shifted to higher BE (533.5, 534.0 eV) for CTS/BC and CTS/BC/PMAA, respectively increase in O content in the composite beads (C-O and O-C = O)


e S u & S

HEM


S

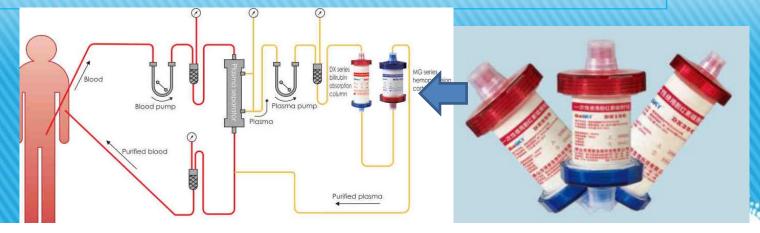
0

Application: Capture of Creatinine

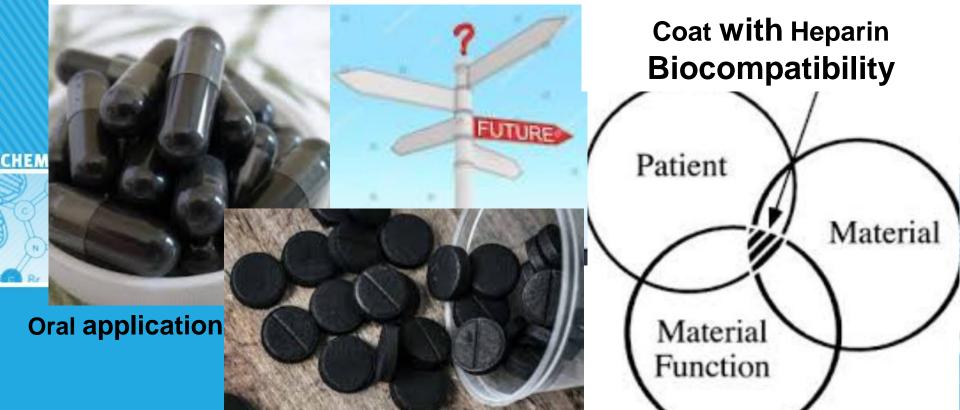
Dynamic adsorption of creatinine (CR) using 40 mg beads for 4 hrs continuous flow through of 100 mg/L creatinine (at pH 7 in phosphate buffer) using a peristaltic pump at a flow rate of 5 ml/min

160.13 mg/g (15.1%)

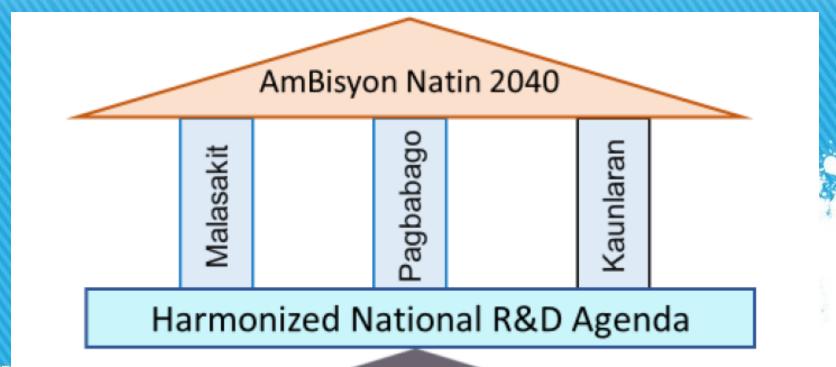
- ✓ Decreased of only 12.2% from 0.5 H to 4 H of dialysis
- ✓ Beads have not yet been exhausted

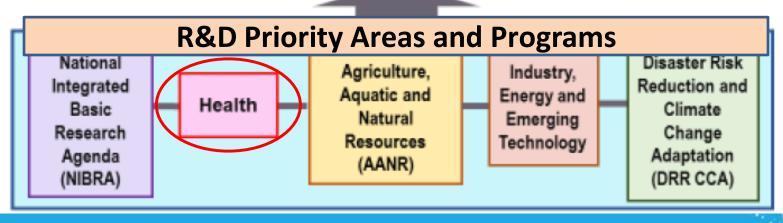

Conclusion

- Beads compose of CTS/BC/PMAA were prepared and characterized
- ✓ BET and Langmuir revealed high SA
- ✓ High occurrence of micropores with pore diameter of less than 2 nm.
- Boehm titration, XPS, solution pH (6.46) and pHzc (6.70) showed acidic surface of CTS/BC/PMAA beads


Conclusion

- ✓ The uniform distribution of CTS and PMAA in the composite beads was revealed by SEM.
- ✓ Successful coating of PMAA and CTS to neat BC was revealed by TGA, 5.1 wt.% of PMAA has been coated to CTS/BC/PMAA and 6.8 wt.% of CTS
- Coating of BC with PMAA and CTS rendered the chemicomposite beads with mechanical strength as indicated by low C particles released in the solution.
 - Capture of aq.Creatinine showed a decrease of only 12% from 0.5 to 4 h of dialysis.


Recommendation and Future Direction


Column Adsorbent for hemodialysis and desorption studies

Biomedical Devices: HNRDA (2017-2020)

Publication...

Bull. Mater. Sci., Vol. 40, No. 6, October 2017, pp. 1179–1187 DOI 10.1007/s12034-017-1464-3 © Indian Academy of Sciences

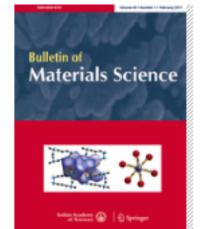
Preparation, characterization of chitosan/bamboo charcoal/poly(methacrylate) composite beads

DOROTHY CAMINOS-PERUELO^{1,4,*}, WEI-CHIEH WANG², TSUNG-SHUNE CHIN³, REGINA C SO⁴, RONALDO M FABICON⁴ and MING-FA HSIEH⁵

Chemistry Department, Xavier University-Ateneo de Cagayan, 9000 Cagayan de Oro City, Philippines

²ITRI South, Industrial Technology Research Institute, Tainan City 734, Taiwan

³Department of Materials Science and Engineering, Feng Chia University, Taichung City 40724, Taiwan

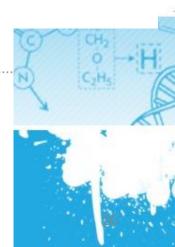

⁴Department of Chemistry, Ateneo de Manila University, 1108 Quezon City, Philippines

⁵Department of Biomedical Engineering, Center for Nanotechnology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan

*Author for correspondence (dperuelo@xu.edu.ph)

CHEN

Bulletin of Materials Science


Published by the Indian Academy of Sciences

Editor-in-Chief: G U. Kulkarni

ISSN: 0250-4707 (print version)

ISSN: 0973-7669 (electronic version)

Journal no. 12034

References

- [1] Hsieh, M.F.; Wen, H.W.; Shyu, C.L; Chen, S.H.; Li, W.T.; Wang, W.C.; Chen, W.C. Journal of Biomedical Materials Research. Part A. 2010, 94(4), 1133-1140.
- [2] Hsieh, M.F., Wen, H.W.; Shyu, C.L; Wang, W.C.; Chen, W.C. Journal of Medical and Biological Engineering. 2007, 27(1), 47-51.
- [3] Boehm H P 1996 Adv. Catal. 16 179
- [4] Dambies L, Domard T VA and Guibal E 2001 Biomacromol. 2 428, 1198 429
- [5] Turner N W, Holdsworth C I, Donne S W, Mc Cluskey A and 430 Bowyer M C 2010 New J. Chem. **34** 686
- [6] Grainger D W and Castner 2011 In: P Ducheyne, K Healy, D Hutmacher, D Grainger, C J Kirkpatrick (eds). Methods of analysis, vol 3, p 2.
- [7] Elkheshein S, Zia H, Needham T E, Badaway A and Luzzi L A 1992 J. Microencapsul. 9 41
- [8] Chandy T and Sharma C P 1993 J. Microencapsul. 10 475
- [9] Li Y, Shao J, Wang X, Deng Y, Yang H and Chen H 2014. Energy Fuels 28, 5119
- [10] Lei H, Wang Y and Huo J 2015 Micropor. Mesopor. Mat. 210, 39
- [11] Hebb, A.A. Chem. Mater. 2003, 269-278.
- [12] DOST, Harmonized Research & Development Agenda 2017-2022.

ACKNOWLEDGMENTS

- CHED, for the scholarship and sandwich program in Taiwan;
 - My research mentors, Prof. Ronaldo M. Fabicon (AdMU)
- Ming-Fa Hsieh, PhD., Chung Yuan Christian University (Taiwan)
 - Regina C. So,Ph.D., Department of Chemistry (AdMU)
- Jose Mario A. Diaz, Ph.D., Department of Chemistry (AdMU)
- Prof. Clovia Holdsworth of the University of New Castle, Australia
- Prof.Rafael Luque & Manuel Rodriguez, Universidad de Cordoba, Spain
 - Rick Arneil Arancon, Universidad de Cordoba, Spain
 - Elvis T. Chua, University of Queensland, Australia
 - Xavier Ateneo, my home institution, study leave grant
 - XU- Chemistry Department faculty and staff.
 - Dr. Heide R. Rabanes, Dean of Research & Dr. Juliet Dalagan, AVP
 - Dr. Ma.Cleofe N. Badang and Dr. Analyn C. Asok
 - My husband, Roldan Peruelo; my kids, Ruthie, Rex and Francis

To Mama Mary
To GOD, be the GLORY & PRAISE.

"Barbecued dessert, anyone? The coals are PERFECT now!"

THANK YOU FOR YOUR

ATTENTION!

charcoal/poly(methacrylate) composite beads and its Adsorption to Creatinine

Dorothy Caminos-Peruelo, Ph.D. Chemistry Department-Xavier Ateneo

Co-Authors:

Ronaldo M. Fabicon, Ph.D., Regina C. So, Ph.D.

Chemistry Department, Ateneo de Manila University

Ming-Fa Hsieh, Ph.D.

Biomedical Engineering, Chung Yuan Christian University, Taiwan

13th Philippine National Health Related System

August 13,2019

Luxe Hotel, Limketkai, Cagayan de Oro City