In-Vitro Determination
of the Anti-Mitotic Activity of
Gracilaria salicornia (marine red
algae) on Tripneustes gratilla (sea
urchin) Embryos using Vincristine
Sulfate as Control

Dajao, M. A.; Dela Cruz, N. L.; Edrial, C. L.; Edulan, V. C.; Glovasa, E. A.; Liu, M. K.; Penas, A. J.; Pizarras, S. J.; Yu, H. V. CEBU INSTITUTE OF MEDICINE

Background of the Study

Cancer

- 3rd leading cause of mortality in the Philippines

- life-threatening disease

- rapid cell division

Background of the Study

- The impact of cancer is a burden for the patient and for the society as a whole.
- The cost of anti-cancer drugs have been increasing.
- Discovery of affordable but similarly efficient alternative treatment would be beneficial.

Marine macroalgae

- Found to be an exceptional source of active pharmacological compounds which have the following activities:
 - Antineoplastic
 - > Antimicrobial
 - Antiviral
 - > Cytotoxic

Gracilaria salicornia

- **>**abundant
- >closely related to Portierra hornemanii
- ➤no documented antimitotic activity

Tripneustes gratilla (sea urchin)

- large eggs
- easily available
- Cost-effective
- shares 7000 genes with human DNA

Related Studies

- In 1992, Lyngbye revealed that *Portiera hornemanii* contained "halomon" which exhibits cytotoxicity against tumor cell lines.
- In 2006, Luardo demonstrated the anti-mitotic activity of *Portiera hornemanii* on onion root tip cells.

Related Studies

In a study in 2009, Notarte and associates screened different species of algae to test the strength of their antimitotic activity.

Rationale

- ➤ Gracilaria salicornia may be a possible treatment for cancer.
- >Used as springboard for future studies.

Objective of the Study

To determine whether *Gracilaria* salicornia possess anti-mitotic activity on *T. gratilla* embryos using Vincristine sulfate as control.

Specific objectives

- 1.To compare the mean cell stages observed 165 minutes post administration of the test treatments:
- •100% filtered sea water (negative control)
- •20 mcg/ml Vincristine sulfate (**positive** control)
- •4% Gracilaria salicornia (**experimental group**)

Specific objectives

2. To compare the proportion of average cell stages that shows inhibition of mitosis defining sensitivity of the sea urchin embryos to the test substances.

METHODOLOGY

Study Design

•In-vitro controlled experimental study design

Study Setting

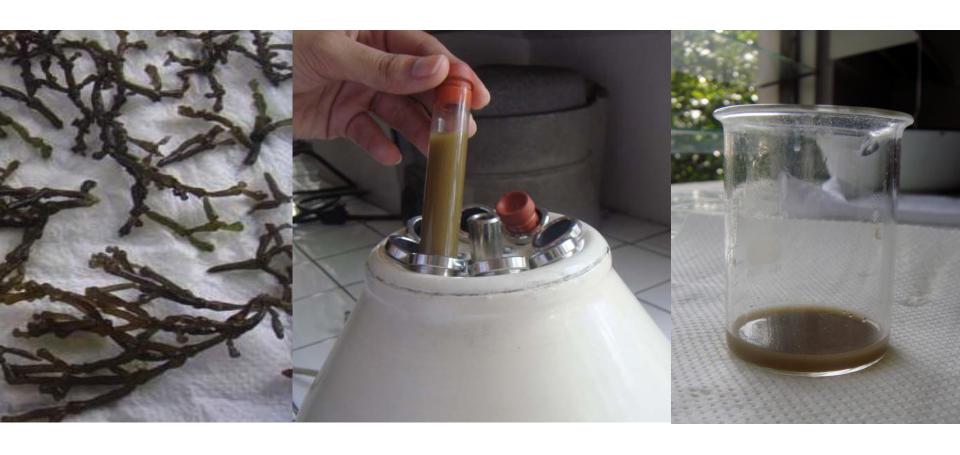
- •University of San Carlos Marine Station in Maribago, Lapu-Lapu
- Microbiology department of Cebu Institute of Medicine

Study Population

Inclusion Criteria

•Only fresh *T. gratilla* sea urchins with an average diameter of 8-10cm

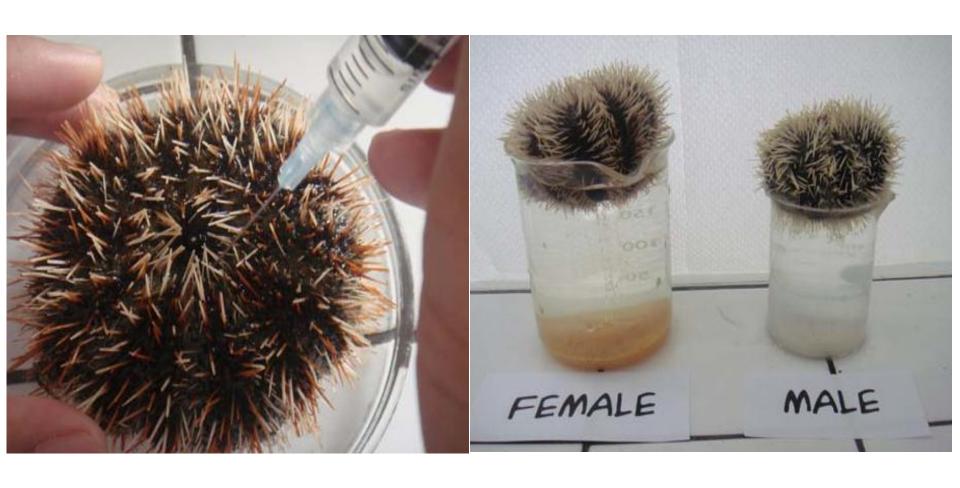
Exclusion Criteria


•Other species of marine algae and sea urchin.

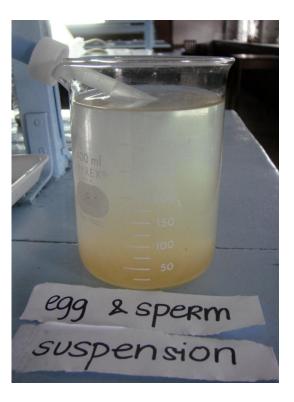
Sampling Procedure

Sample Size:

A sample size of 750 was calculated.


Preparation of Marine Macroalgae (Gracilaria salicornia)

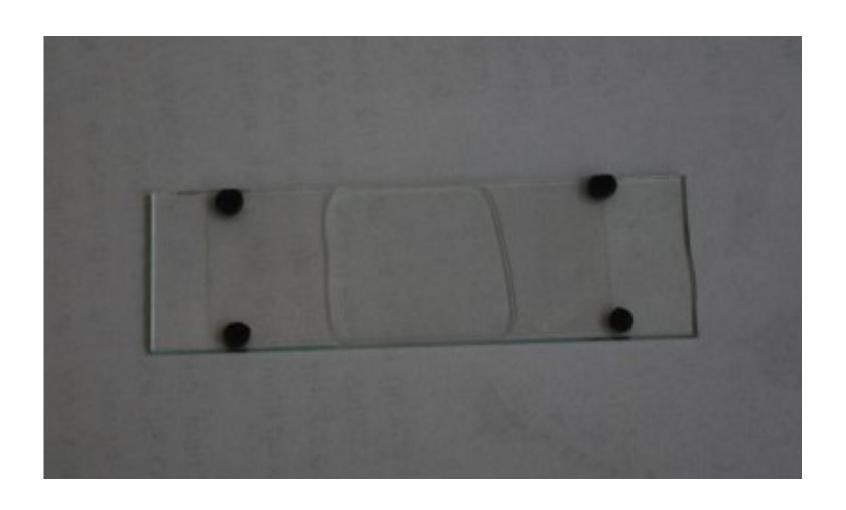
Preparation of Sea Urchin (Tripneustes gratilla)


Spawning of the Sea Urchins (Tripneustes gratilla)

Experimental treatments

- Negative control 100% filtered seawater
- Positive control 20 mcg/ml
 Vincristine sulfate
- Experimental group 4% Gracilaria salicornia extract

Experimental treatments



DATA COLLECTION

Clay Feet Preparation

Cell stages

A) 1-cell stage, (B) 2-cell stage, (C) 4-cell stage, (D) 8-cell stage, (E) 16-cell stage, and (F) 32-cell stage

		TREATMENT 1				TREATMENT 2					TREATMENT 3										
	R	Cell Stages				Ce	ll Sta				Cell Stages										
Time 0		1		2	4	8	16	32	1	2	4	8	16	32	1		2	4	8	16	32
	1																				
	2																				
	3																				
	4																				
	5																				
Time 1																					
	1																				
	2																				
	3																				
	4																				
	5																				
Time 2																					
	1																				
	2																				
	3																				
	4																				
	5																				
Time 3																					
	1																				
	2																				
	3																				
	4																				
T' 4	5																				
Time 4	4																				
	1																				
	2 3 4																				
	3																				
Time 5	5																				
Time 5	1																				
	2																				
	4																				

Operational definition

Average cell stage – refers to the weighted mean number of cells per embryo.

Average cell stage = (No. cells x cell stage₁ + No. cells x cell stage₂ + No. cells x cell stage_{n...}) /total number of cells

Operational definition

Time	Number of Cells per Embryo							
After		100% filtered seawater						
Fertiliza	1	2	4	8	16	32	Avera	
tion							ge	
(minute							Cell	
s)	No.	No.	No.	No.	No.	No.	Stage	
15	8	268	343	93	38	0	4.36	

Average cell stage =
$$[(1x8) + (2x268) + (343x4) + (8x93) + (16x38)]$$

 $8+268+343+93+38$
= $8+536 + 1372 + 744 + 608$
 750
= 3268
 750

= 4.36

Operational definition

Mitotic inhibition – based on the average cell stages at 165 minutes post administration of treatment with the following interpretation:

INTERPRETATION	AVERAGE CELL STAGE	SIGNIFICANCE	
Sensitive			Effective inhibition of mitosis
Intermediate	with an average stage of 2.01-6.0.		Moderate inhibition of mitosis
Resistant	with an average stage of 6.01 a above.		Ineffective inhibition of mitosis

Data Analysis

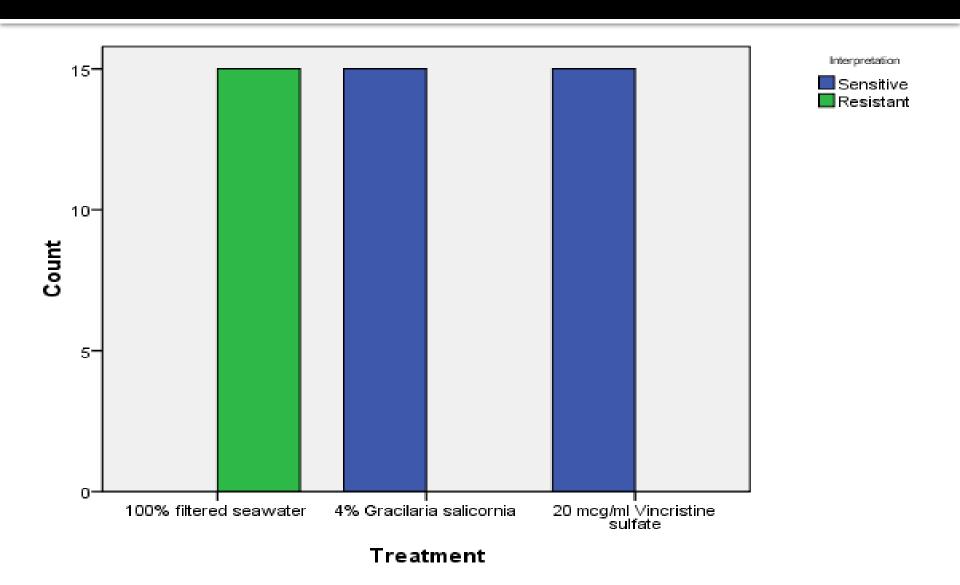
- SPSS version 16.0
- ➤ Analysis of Variance (ANOVA)
- ➤Brown-Forsythe
- ➤ Multiple Pairwise Comparisons Test (Least Significant Difference)
- ➤ Chi-square test of homogeneity

P value of <0.05 is deemed as significant.

Results and Discussion

Summarized Results of 3 Trials among 100% filtered seawater, 4% *Gracilaria salicornia*, and 20 mcg/mL Vincristine sulfate at 165 minutes after fertilization

Treatment						Cell S	tage						ACS
		1		2		4		8	1	16	3	2	
	No.	%	No.	%	No.	%	No.	%	No.	%	No.	%	
100% filtered seawater	0	0	95	12.7	287	38.3	258	34.4	98	13.1	12	1.6	7.14
4% G. salicornia	724	96.5	22	2.9	4	0.5	0	0	0	0	0	0	1.05
20mcg/ml Vincristine	724	96.5	23	3.1	3	0.4	0	0	0	0	0	0	1.04


Average Cell Stage at 165 minutes among the three treatment groups

GROUP	Mean	Standard deviation	P value
100% Filtered Seawater	7.1387	.55752	.000
4% Gracilaria salicornia	1.0453	.02326	
20 mcg/ml Vincristine sulfate	1.0413	.03248	

MULTIPLE COMPARISON WITH LSD (Least Significant Difference)

(I) Treatment	(J) Treatment	Mean Difference (I-J)	Std. Error	Sig.
100% filtered seawater	4% Gracilaria salicornia	6.10933*	.11506	.000
	20 mcg/ml Vincristine sulfate	6.11200*	.11506	.000
4% Gracilaria	100% filtered seawater	-6.10933 [*]	.11506	.000
	20 mcg/ml Vincristine sulfate	.00267	.11506	.982
20 mcg/ml Vincristine sulfate	100% filtered seawater	-6.11200*	.11506	.000
	4% Gracilaria salicornia	00267	.11506	.982

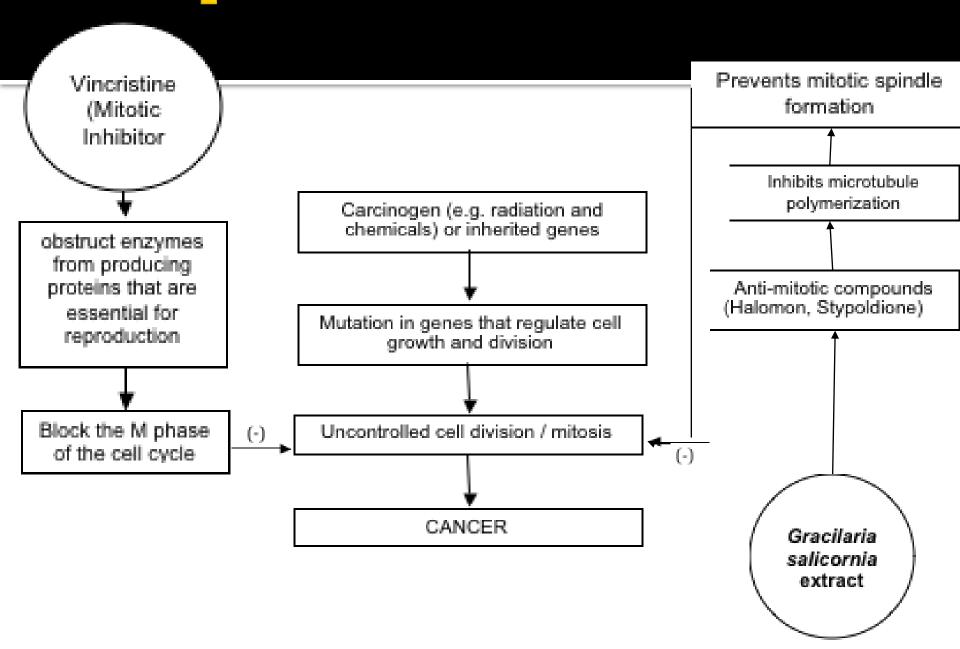
Comparison of the proportion of average cell stages that shows inhibition of mitosis defining sensitivity of the sea urchin embryos to the test substances.

Conclusion

4% *Gracilaria salicornia* possesses anti-mitotic activity which is comparable to Vincristine sulfate on the inhibition of mitosis of the fertilized *Tripneustus gratilla* embryos.

It is therefore a potential alternative to Vincristine Sulfate as an anti-mitotic agent.

Recommendations


- ➤ Isolation and characterization of the antimitotic compounds found in *G. salicornia*.
- Testing on vertebrate cells in future studies.
- Doing the experiment through a 12-month cycle.
- Screening for other unknown marine algae.

Thank you!

In-Vitro Determination
of the Anti-Mitotic Activity of
Gracilaria salicornia (marine red
algae) on Tripneustes gratilla (sea
urchin) Embryos using Vincristine
Sulfate as Control

Dajao, M. A.; Dela Cruz, N. L.; Edrial, C. L.; Edulan, V. C.; Glovasa, E. A.; Liu, M. K.; Penas, A. J.; Pizarras, S. J.; Yu, H. V.

Conceptual framework

Summary

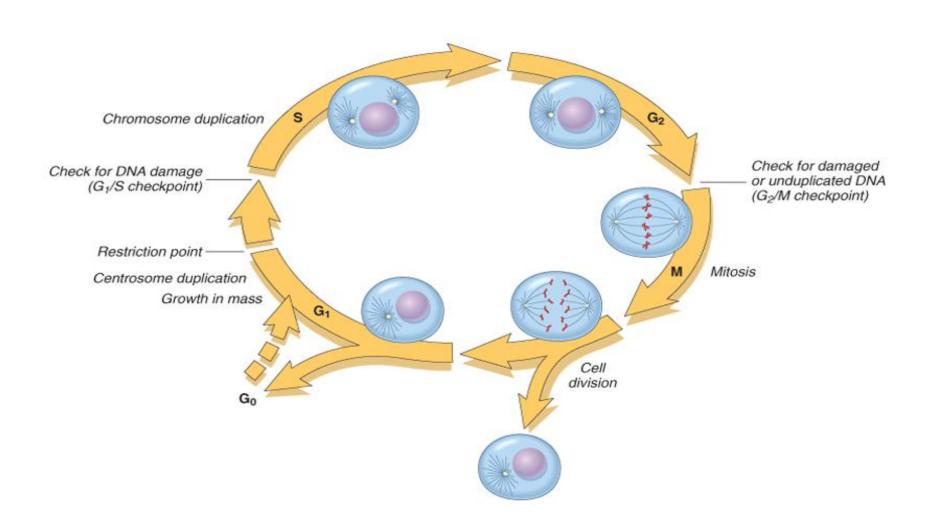
165 minutes post administration of the treatments:

4% Gracilaria salicornia - 1.05

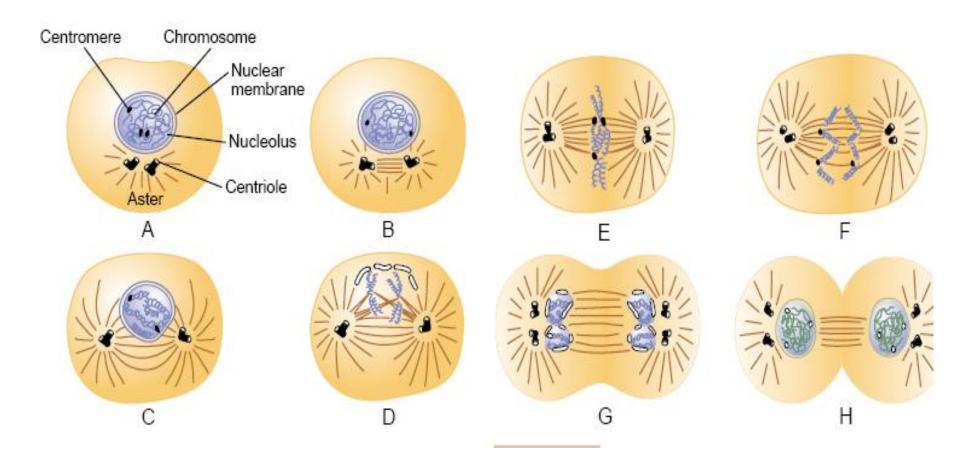
20mcg/ml Vincristine - 1.04

100 % filtered seawater - 7.14

Significant difference: Between the 100 % filtered seawater to 4% Gracilaria salicornia and 20 mcg/ml Vincristine sulfate


No significant difference: Between 4% Gracilaria salicornia and 20 mcg/ml Vincristine sulfate

Thus, *Gracilaria salicornia* is as effective as Vincristine, making it a possible alternative.


Some Anti-cancer Compounds from Marine Macroalgae

COMPOUND	SOURCE	ACTION
Stypoldione	Stypodium zonale	Inhibits microtubule polymerization and thereby prevents mitotic spindle formation
lodinated nucleoside	Hypnea valitiae	A potent and specific inhibitor of adenosine kinase.
Curacin A	Lynbya majuscula	Repress the assembly of microtubules and binding of colchicines to tubulin
Caulerpenyne	Caulerpa taxifolia	Causes a shift in the S phase, blocking the G2 phase

Cell Cycle

Cell Cycle

